The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1 2X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 2X  X  1  1  1  2  X  1  1
 0  X  0  X  0  0  X  X  2 X+2  2 X+2  2  2 X+2 X+2  0  0  X  X  0  0  X  X  2  2 X+2 X+2 2X  2  2 X+2 X+2 2X 2X 2X 3X 3X 2X 2X 3X 3X 2X+2 2X+2 3X+2 3X+2 2X+2 2X+2 3X+2 3X+2 2X 2X 3X 3X 2X 2X 3X 3X 2X+2 2X+2 3X+2 3X+2 2X+2 2X+2 3X+2 3X+2  0  0  0  0  X  X  X  X  2  2 X+2 X+2  2  2 X+2 X+2 X+2  0  2  X  X 2X 2X+2 3X+2  X X+2 3X  X
 0  0  X  X 2X+2 X+2 3X+2  2  2 X+2 3X 2X 3X+2 2X 3X 2X+2 2X 3X+2 3X 2X+2 3X  2 X+2 2X 2X+2  X 3X+2  0  X  0 X+2  X  2  X 2X 3X+2 3X 2X+2  2  X X+2  0 2X+2 3X 3X+2 2X  0 X+2  X  2  0 X+2  X  2 2X+2 3X 3X+2 2X  2  X X+2  0 2X 3X+2 3X 2X+2  0 X+2 2X+2 3X  X  2 3X+2 2X  2  X 3X+2 2X 2X 3X+2 3X  0  X 2X 3X 2X+2  X  0  X  X 2X+2 X+2 2X  2

generates a code of length 94 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 92.

Homogenous weight enumerator: w(x)=1x^0+294x^92+128x^93+256x^94+128x^95+174x^96+42x^100+1x^176

The gray image is a code over GF(2) with n=752, k=10 and d=368.
This code was found by Heurico 1.16 in 17 seconds.